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We provide a common framework for compatible discretizations using 
algebraic topology to guide our analysis. The main concept is the natural 
inner product on cochains, which induces a combinatorial Hodge theory. 
The framework comprises of mutually consistent operations of 
differentiation and integration, has a discrete Stokes theorem, and 
preserves the invariants of the DeRham cohomology groups. The latter 
allows for an elementary calculation of the kernel of the discrete 
Laplacian. Our framework provides an abstraction that includes examples 
of compatible finite element, finite volume and finite difference methods. 
We describe how these methods result from the choice of a reconstruction 
operator and when they are equivalent.  
. 

Introduction 
Compatible discretizations are model reduction techniques that replace continuum 

partial differential equation models by algebraic equations that mimic their fundamental 
structural properties. Spatial compatibility is especially relevant to coupled transient 
multiphysics simulations where unphysical modes from one model component may cause 
instability in the remaining components. In the context of hydrodynamics-transport 
applications spatial compatibility leads to locally conservative schemes that are consistent 
with integral forms of the conservation laws. It is well known that for weak solutions 
with shock waves the integral form is more relevant than the differential equation form. 
In particular, it leads to the Rankine-Hugoniot conditions that govern the speed and the 
form of the shock waves. As a result, compatible schemes are critical to obtain accurate 
approximation of shock speeds and positions; in contrast, non-compatible methods are 
not guaranteed to converge to weak solutions of the conservation law (Leveque, 2002). 

We provide a common framework for compatible discretizations using algebraic 
topology (Cairns, 1961, Flanders, 1989) to guide our analysis. This results in 
combinatorial operations of differentiation and integration that obey a discrete Stokes 
theorem. Furthermore, the invariants of DeRham cohomology groups (Dezin, 1995) are 
preserved in a discrete sense, which allows, among other things, for an elementary 
calculation of the kernel of the discrete Laplacian. One of the first applications of 
algebraic topology to compatible discretizations is due to (Hyman and Scovel, 1988). We 
draw upon many of the ideas proposed in that paper. Other works of note that use exterior 
calculus to develop compatible discretizations are (Mattiussi, 1997), (Dezin, 1995), 
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(Hiptmair, 2001) and (Arnold, 2002). For further references in this area, we refer the 
reader to (Bochev and Hyman, 2005). 

The key components of the framework are a restriction operator defined by the 
DeRham map and reconstruction operator. We show how some existing compatible finite 
element (Bossavit, 1998), finite volume (Nicolaides and Wu, 1997) and finite difference 
(Hyman and Shashkov, 1997) methods are obtained from the framework by specific 
choices of the reconstruction operator. This opens up a possibility to develop a common 
convergence and stability analysis across a range of discrete models (Berndt et al, 2001). 

Notation 
We assume that the reader is familiar with the basic notions of exterior differential 

calculus as found in (Flanders, 1989). Below we briefly review notations that are used 
throughout the paper.  

Let Ω denote a bounded region in three-dimensions. With 

! 

"
k
#( ) , k=0,1,2,3, we 

denote the set of all smooth differential forms 

! 

x"#(x)$ %
k
T
x
&( ) . Here 

! 

T
x
"  is the 

tangent manifold to Ω at x. We recall the wedge product   

! 

" :#
k
($) % #

l
($)a #

k+ l
($) and 

the exterior derivative   

! 

d :"
k
(#)a "

k+1
(#). The exterior derivative satisfies dd=0 and 

gives rise to an exact sequence 

! 

R"#
0 d
$ " $ #

1 d
$ " $ #

2 d
$ " $ #

3
" 0 (1) 

called the De Rham complex. If Ω is a Riemannian manifold, the metric structure gives 
rise to an inner product 

! 

" , "( ) on 

! 

"
k
#( )  and an adjoint d* to d defined by 

! 

d",#( ) = ",d *#( ) . (2) 

The completion of 

! 

"
k
#( )  with respect to the inner product is the Hilbert space of 

square integrable differential forms 

! 

"
k
L
2
,#( ) . We also have the Sobolev spaces 

! 

"
k
d,#( ) = $ % "

k
L
2
,#( ) | d$ % "

k+1
L
2
,#( ){ }. (3) 

We assume that the boundary of Ω consists of two disjoint, smooth, possibly empty 
components 

! 

"
1
 and 

! 

"
2
, respectively. At every boundary point, a differential form can be 

decomposed into its tangential and normal components, 

! 

" ="
t
+"

n
. For the Sobolev 

spaces (3) we consider the boundary condition 

! 

"
t

= 0  on 

! 

"
1
.  

Translation of fields to forms 
The relationship between forms and vector-scalar functions is determined as follows. 

Let x,y,z be local coordinates. Then a 0-form is a function and a 3-form can be written as 

! 

" = f dx #dy #dz. This defines the relation 

! 

"# function. A 1-form can be written as 

! 

" = adx + bdy + cdz  and a 2-form can be written as  

! 

" = ady #dz + bdz#dx + cdx#dy . (4) 

Therefore, 1 and 2-forms are associated with vector fields. The action of the exterior 
derivative on 0,1 and 2-forms gives the action of the gradient, curl and divergence on the 
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associated scalar or vector field. Furthermore, if 

! 

"
1
 and 

! 

"
2
 are two 1-forms with 

corresponding vector functions v1 and v2, then the wedge product 

! 

"
1
#"

2
 is a 2-form with 

corresponding vector function 

! 

v
1
" v

2
. If η is a 2-form with corresponding vector function 

v3 , then the wedge product 

! 

"
1
#$  is a 3-form with scalar function 

! 

v
1
" v

3
. 

Algebraic topology 
In this section, we review some basic concepts in algebraic topology; see (Cairns, 

1961), as they apply to deriving discrete approximations to differential operators. Our 
principal goal is to develop a framework that offers mutually consistent discrete notions 
of integration and differentiation and provides discrete operators that verify the basic 
vector calculus identities. 

Chain Complex 
For simplicity, we restrict attention to computational grids that are simplicial 

complexes. However, all developments can be extended to general polyhedral chain 
complexes. For basic definitions and operations on simplexes, we refer to (Flanders, 
1989). In particular, we recall the boundary operator ∂ with the property that ∂∂=0.  

A chain is a formal linear combination of k-simplexes. Ck denotes the space of all k-
chains. Thus, 

! 

c " C
k
 if 

! 

c = a
i
s
k

i

i

"  where 

! 

s
k

i  are a k-simplexes and ai are real numbers. 

Boundary of a chain is defined by linearity. Assume that 

! 

K = C
0
,C

1
,C

2
,C

3( ) is a complex. 
Then, we have the exact sequence  

! 

0" C
0

#
" $ $ C

1

#
" $ $ C

2

#
" $ $ C

3
" 0 . (5) 

In this sequence 

! 

C
0
 represents the set of all ordered vertices in the triangulation. The 

ordering of the vertices induces orientation of the edges 

! 

C
1
, the faces 

! 

C
2
 and the cells 

! 

C
3
 

in the triangulation K. 

Cochain Complex 
The space of all bounded linear functionals on 

! 

C
k
 is denoted by 

! 

C
k . The elements of 

! 

C
k  are called cochains and the duality pairing between chains and cochains is denoted by 

! 

" , " . The adjoint of ∂, 

! 

" :Ck
#C

k+1 is defined by 

! 

"c
k+1,c

k
= c

k+1,#c
k . This operator, 

called coboundary, satisfies δδ=0 and forms an exact sequence dual to (5): 

! 

0"C
0 #
$ " $ C

1 #
$ " $ C

2 #
$ " $ C

3
" 0. (6) 

Let 

! 

"
k

i{ } be a basis for 

! 

C
k
. The spaces 

! 

C
k
 and 

! 

C
k  are isomorphic and we can identify 

the basis of 

! 

C
k  with 

! 

"
k

i{ }. Thus, 

! 

" k

i
," k

j
= #ij  and a cochain can be written as 

! 

c
k

= a
i
"
k

i

i

# . (7) 

The action of this cochain on a chain 

! 

c
k

= b
i
"
k

i

i

#  is given by 
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! 

c
k
,ck = aib j " k

i
," k

j

i, j

# = aibi
i

# . (8) 

Compatible discretizations 
We define all discrete structures in our framework by using two basic operators. The 

reduction operator 
  

! 

R :"
k
L
2
,#( )$C

k  translates forms to cochains and is given by the De 
Rham map 

  

! 

R",# = "
#

$ . (9) 

This map establishes discrete representation of k-forms in terms of global quantities 
associated with the chain complex K. Therefore; k-forms are encoded as k-cell quantities. 
The De Rham map has the important Commuting Diagram Property   

! 

Rd = "R .  

The reconstruction operator 
  

! 

I :C
k
"#

k
L
2
,$( ) translates cochains back to forms. 

Owing to the many possible ways in which global information can be used to obtain local 
representations, the choice of this operator is quite flexible. However, to obtain consistent 
discrete structures this operator must satisfy two conditions. Specifically,   

! 

I  must be a 
right inverse of   

! 

R   

  

! 

RI = id  (10) 
and an approximate left inverse of that operator: 

  

! 

IR = id +O(h
s
) .  (11) 

In Eq. (11) s and h are positive real numbers that give the approximation order and 
the partition size in K, respectively. From Eq. (10) follows that  

  

! 

kerI = 0 . (12) 
The range of   

! 

I  is required to contain at least square integrable forms. When the range 
of   

! 

I  is a subspace of the Sobolev spaces in Eq. (3), we call   

! 

I  a conforming 
reconstruction operator. 

Combinatorial operations 
The integral of 

! 

a" C
k is defined on chains 

! 

" # C
k
 by duality: 

! 

a

"

# = a," . (13) 

To define a discrete derivative acting on cochains note that forms are dual to chains 
with respect to the pairing induced by integration and that, according to the Stokes 
theorem, d is the adjoint of ∂. We mimic this by using the duality of 

! 

C
k
 and 

! 

C
k . Since ∂ 

is adjoint to δ, it follows that the discrete gradient, curl and divergence are given by the 
action of the coboundary. 
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Natural and derived operations 
Natural operations are defined by composition of   

! 

I  with the desired analytic 
operation. Thus, they provide the best possible approximations of these operations on 
cochains. The natural inner product on cochains is given by 

  

! 

a,b( ) = Ia,Ib( )  (14) 

and the natural wedge product is defined by the formula 

  

! 

a"b =R Ia"Ib( ) . (15) 

Nondegeneracy of the inner product follows from Eq. (12). 
The derived operations are induced by the natural operations. The inner product on 

cochains in Eq. (14) gives rise to an adjoint   

! 

"* :Ck+1
a C

k  of δ by virtue of 

! 

"#a,b( ) = a,"b( ) . This adjoint has the property that δ*δ*=0 and provides a second set of 
discrete gradient, curl and divergence operators. The use of δ or its adjoint δ* is 
determined by the encoding of scalar functions by 0 or 3-forms and of vector functions 
by 1 or 2-forms, respectively. 

Using δ and δ* we define a discrete Laplacian   

! 

D :C
k
a C

k by the formula 

! 

D = "#" + ""# . (16) 
The derived operations are necessary to avoid internal inconsistencies between the 

discrete operations in the framework. Because reconstruction is an approximate inverse 
of the reduction, using only natural definitions will lead to conflicts between the resulting 
set of operations. For example, the analytic adjoint is given by 

! 

d
"

= (#1)
k
" d ". As a 

result, a natural definition of the discrete adjoint is  

  

! 

"# = ($1)
k
R # d #I . (17) 

Note that Eq. (17) requires   

! 

I  to be a conforming operator, a property that is not 
needed for the derived definition of the adjoint. More importantly, however, the natural 
definition of the adjoint is incompatible with the natural definition of the inner product in 
Eq. (14). One can show that 

! 

"#a,b( ) = a,"b( ) +O(hs)  and so, the operator defined in Eq. 
(17) is not the adjoint of δ with respect to the inner product defined in Eq. (12). 

Because 

! 

C
k  are finite dimensional spaces, all discrete operations can be realized by 

matrices acting on vectors of coefficients formed by the quantities associated with the k-
cells of the complex K. For further details about this aspect of the discrete framework, we 
refer the reader to (Bochev and Hyman, 2005). 

Mimetic properties 
The combinatorial, natural and derived operations defined in the last section, mimic 

the properties of their analytical counterparts. Discrete integration and differentiation 
satisfy a discrete Stokes theorem: 

! 

"ck#1,c
k

= c
k#1
,$c

k
. (18) 
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Eq. (18) is a consequence of the definition of the discrete derivative as the adjoint of the 
boundary operator. The discrete derivative and its adjoint and the discrete wedge product 
satisfy the standard vector calculus identities 

! 

"" = " *"*= 0 , 

! 

a"b = (#1)
kl
b"a, and  

! 

" a#b( ) = "a#b + ($1)k a#"b  (19) 

Note that Eq. (19) requires a conforming reconstruction operator. 
The inner product in Eq. (12) induces a combinatorial Hodge theory on cochains 

(Dodziuk, 1973). We can define the set of harmonic cochains  

! 

H
k
K( ) = c

k
" C

k
|#ck = #$ck = 0{ }   (20) 

and then obtain a discrete Hodge decomposition 

! 

a = "b+ h + "#c  on Ck. Using this 
decomposition it is possible to show (Dodziuk, 1973), (Hyman and Scovel, 1988), 
(Bochev and Hyman, 2005), that the size of the kernel of the analytic Laplacian is the 
same as the size of the kernel of the discrete Laplacian. This remarkable property of the 
discrete Laplacian is a consequence of using the derived, rather than the natural definition 
of the adjoint δ* in Eq. (16). 

The choice of the primary operation 
In our framework, the primary discrete operation is the natural inner product on 

cochains. Other approaches; see e.g., (Hiptmair, 2001) or (Bossavit, 1998) make the 
discrete ∗ the primary discrete operation and its construction is the central problem. In 
(Bochev and Hyman, 2005) it is demonstrated that a natural definition of this operator is 
not compatible with the natural inner and wedge product operations, while a derived ∗ 
operation is not compatible with the reconstruction and the reduction mappings. 
Furthermore, both the derived and the natural ∗ are not compatible with the derived 
adjoint δ*. Therefore, in a consistent discrete framework the primary operation can be 
either the natural inner product or the discrete ∗ operation. Our choice is motivated by the 
complications that arise in the definition of a good discrete ∗ and the fact that the inner 
product is sufficient to induce a combinatorial Hodge theory on cochains.  

Most often, a discrete ∗ is required to discretize material laws. Because of the 
difficulties with this operation, we prefer either to incorporate material laws in the 
definition of the natural inner product, or to enforce them in a weak sense. In the first 
case we use the adjoint δ* and in the second we translate the problem into an equivalent 
constrained optimization problem. This approach guarantees that the discrete Laplacian is 
always a symmetric and semi-definite operator.  

Applications 
In this section we discuss two basic types of models that arise in the discrete 

framework. Then we provide examples of reconstruction operators that lead to finite 
element, finite volume and finite difference realizations of the discrete models.  

As a model problem, we consider the eddy current equations written in invariant form 
as a first-order system with material laws,  

! 

de = "dtb; dh = j; #
µ "1 b = h; #

$ "1 j = e. (21) 
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as a first-order system in terms of codifferentials 

! 

de = "d
t
b; e = #

$ "1 d #µ "1 b (22) 

and as a second order system 
 

! 

d "
# $1 d "µ $1 b = $d

t
b . (23) 

We assume that Eqs. (21)-(23) are augmented by the appropriate boundary conditions. 
Eqs. (22)-(23) do not involve explicit material laws and can be discretized without 

any further transformations. A direct mimetic discretization translates the forms in Eqs. 
(22)-(23) to cochains and then uses the available discrete derivatives to mimic the 
original equations. Thus, the direct mimetic models of Eqs. (22) and (23) are given by 

! 

"e1 = #"
t
b
2
; e

1
= "$b2  (24) 

and  

! 

""#b2 = $"
t
b
2 , (25) 

respectively. If the discrete time derivative 

! 

"
t
 commutes with the discrete derivative from 

Eq. (24) we see that b stays divergence free if it was divergence free at the initial time 
moment. 

A conforming mimetic discretization restricts Eqs. (22)-(23) to the range of   

! 

IR . This 
requires   

! 

I  to be a conforming reconstruction operator so as to obtain finite dimensional 
subspaces of the appropriate Sobolev spaces. For examples of such methods, we refer to 
(Bochev and Hyman, 2005) where it is shown that for conforming reconstruction 
operators direct and conforming mimetic methods are equivalent.  

Eq. (21) involves material laws and its straightforward discretization would require a 
discrete ∗ operation for their approximation. To avoid construction of this operation we 
first translate Eq. (21) to an equivalent constrained optimization problem 

    

! 

min
1

2
j "#$ e

2

+ b "#µ h
2

( ) subject to   de = "dtb  and   dh = j  (26) 

and then discretize Eq. (26). A direct mimetic model of Eq. (26) is obtained by translating 
the forms to cochains and then solving the discrete optimization problem 

    

! 

min
1

2
j
2 " e1

2

+ b
2 " h1

2# 
$ 
% & 

' 
( subject to   )e1 = ")tb

2
  and   )h1 = j

2. (27) 

We can also define a conforming discretization of Eq. (26) by restricting 
minimization to the range of   

! 

IR . As before, this requires   

! 

I  being a conforming 
reconstruction operator. 

Let us now provide some examples of reconstruction operators. For simplicity, we 
consider two-dimensional grids and reconstruction of 1-forms from 1-cochains. To define 
the covolume reconstruction operator (Trapp, 2004) each triangle is divided into three 
subregions by connecting the circumcenter to the nodes as shown in Fig. 1 

! 

V
i

! 

P
1

! 

P
2

! 

P
3
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Figure 1. Examples of reconstruction operators: covolume (left), mimetic (center) 
and Whitney (right). 

The covolume reconstruction operator maps the 1-cochain associated with the edges 
of the triangle to a picewise constant field. On each sub-triangle the image is the constant 
vector field that is parallel to the edge of the triangle and has circulation given by the 
cochain value. The range of this reconstruction operator is in the Hilbert space 

! 

"
k
L
2
,#( )  

but not in the Sobolev space 

! 

"
k
d,#( ) . Therefore, covolume reconstruction is not 

conforming and can only be used in direct discretizations. A unique property of covolume 
reconstruction is that derived operators have local stencils and there is a discrete ∗ star 
operation that is compatible with the natural inner product. This property follows from 
the fact that covolume reconstruction can be associated with cochains on a Voronoi-
Delaunay grid complex; see (Trapp, 2004), (Nicolaides and Wu, 1997). This association 
also implies that existence of the covolume reconstruction is contingent upon the 
existence of the Voronoi regions and so the simplexes must satisfy an angle condition 
(Nicolaides and Wu, 1997).  

Mimetic reconstruction (Hyman and Shashkov, 1997) acts in a similar way and 
recovers a piecewise constant field that is in 

! 

"
k
L
2
,#( )  but not in 

! 

"
k
d,#( ) . The main 

difference is that mimetic reconstruction uses subregions associated with the vertices of 
the triangle; see Fig. 1, and so, they are bordered by two edges. The constant field on 
each subregion is defined to be the linear combination of the edge vectors with 
coefficients equal to the values of the 1-cochain on the edges. Mimetic reconstruction is 
less restrictive than the covolume one because existence of the subregions is not 
contingent upon the circumcenter being inside the triangle. However, mimetic 
reconstruction gives rise to non-local derived operators. 

The Whitney map (Whitney, 1957), (Dodziuk, 1973) is an example of a conforming 
reconstruction operator whose range is in the Sobolev space 

! 

"
k
d,#( ) . Let Pi; i=1,2,3 be 

the vertices of the triangle (see Fig. 1) and 

! 

"
i

{ }
i=1

3  their barycentric coordinates. The 
Whitney 1-forms on the triangle are given by  

! 

" ij = #id# j $ # jd#i; 1% i < j % 3. (28) 

 Let 

! 

c
1 = c

12
,c
13
,c
23( ) be a 1-cochain where 

! 

cij  is the value associated with the edge 
whose endpoints are Pi and Pi,. Whitney reconstruction maps 

! 

c
1 to a differential 1-form 

according to the formula 

  

! 

Ic
1 = cij" ij

i< j

# = cij $id$ j % $ jd$i( )
i< j

# . (29). 

It is not hard to see that the right hand side in Eq. (29) is indeed a differential 1-form 
with polynomial coefficients. It is possible to show that gluing together reconstructions 
from all triangles gives rise to a piecewise polynomial 1-form that is in the Sobolev space 

! 

"
k
d,#( )  (Dodziuk, 1973). 

The covolume reconstruction is most often encountered in finite volume type 
discretizations (Nicolaides and Wu, 1997), (Trapp, 2004). Mimetic reconstruction has 
been used in the so-called mimetic finite difference methods (Hyman, Shashkov, 1997). 
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Whitney map, on the other hand is an example of reconstruction that leads to discrete 
models of the finite element type. It has been extensively used in finite element methods 
for the Maxwell’s equations (Bossavit, 1998).  

Conclusions 
In this paper, we described a general framework for mimetic discretizations that uses 

two basic operators to define all discrete structures. In this framework cochains 
approximate scalars and vectors. Differentiation and integration are combinatorial 
operations induced by the De Rham map. Inner product and wedge product are natural 
operations defined by a reconstruction operator. The inner product induces an adjoint 
derivative and a discrete Laplacian. Together with the combinatorial and natural 
operations, these derived operations comprise the basis of the mimetic framework. 

The choice of the natural and derived operations is governed by the internal 
consistency of the framework. In particular, a consistent discrete framework requires a 
choice of its primary operation. In our approach, this operation is the natural inner 
product on real cochain spaces. In other approaches, the key concept is the discrete ∗ 
operation and its construction is the principal computational task. 

The choice of the inner product instead of the ∗operation is motivated by the 
complications that arise in the construction of the latter and the fact that the inner product 
is sufficient to induce a combinatorial Hodge theory on cochains. For problems that 
require approximations of material laws, we propose to consider constrained optimization 
formulations that enforce the laws weakly. In all other cases, our framework offers the 
choice of direct and conforming methods. Direct methods are representative of the type 
of discretizations that arise in finite volume and finite difference methods while 
conforming methods are typical of finite element methods. For conforming 
reconstruction operators direct and conforming methods are equivalent. This opens up a 
possibility to carry out error analysis of direct mimetic methods by using variational tools 
from finite elements. A recent example is the analysis in (Berndt et al, 2001). 
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